Molecular identification of Trichoderma sp. Margodadi isolate and its potential against Phytophthora capsici causing foot rot of black pepper

Main Article Content

Joko Prasetyo
Nur Baitullah Juniar
Rusdi Evizal
Tri Maryono
Cipta Ginting

Abstract

Trichoderma has the potential to suppress fungal pathogens and thus control plant diseases, including Phytophthora foot rot, which is the most devastating disease of black pepper in Lampung. Identification of a microorganism can not only rely on its morphological characteristics, but it is also necessary to identify it molecularly at the species level. This research was aimed at identifying the fungus Trichoderma sp. Margodadi isolates at the species level and to know the potential of Trichoderma sp. Margodadi isolates and their secondary metabolites to control P. capsici. This research was conducted from March to November 2021 at the Laboratory of Plant Disease, Department of Plant Protection, and the Laboratory of Agricultural Biotechnology, Faculty of Agriculture, University of Lampung. Identification of Trichoderma was done by morphological characteristics and molecular methods. The ability of Trichoderma to suppress P. capsici was tested by dual culture. The effect of secondary metabolites on the growth of P. capsici was determined in vitro at concentrations of 0% (control), 10%, 20%, 30%, and 40%. The experimental design used was a completely randomized design consisting of five treatments repeated five times. The data obtained from the test were analyzed using ANOVA, followed by the LSD test at 5%. The results of this study showed that Trichoderma sp. Margodadi isolate had a close relationship with Trichoderma asperellum and had the ability as an antagonist to inhibit the growth of P. capsici up to 47.23%, and the secondary metabolites produced could inhibit the growth of P. capsici up to 72.53% with the best concentration of 40%.

Article Details

How to Cite
(1)
Prasetyo, J. .; Baitullah Juniar, N. .; Evizal, R.; Maryono, T.; Ginting, C. Molecular Identification of Trichoderma Sp. Margodadi Isolate and Its Potential Against Phytophthora Capsici Causing Foot Rot of Black Pepper. J Trop Plant Pests Dis 2024, 24, 128-138.


Section
Articles

References

Ardiana SA, Astarini IA, Putra ING, Pertiwi PD, Sembiring A, Yusmalinda A, & Al Malik D. 2021. Keragaman genetik dan filogenetik longtail tuna (Thunnus tonggol) yang didaratkan di Pasar Ikan Pabean, Surabaya [Genetic diversity and phylogenetic of longtail tuna (Thunnus tonggol) landed in Pabean Fish Market, Surabaya]. Musamus Fisheries and Marine Journal. 3(2): 107–115. https://doi.org/10.35724/mfmj.v3i2.3375

Barnett HL & Hunter BB. 1998. Illustrated Genera of Imperfect Fungi. 4th ed. APS Press, St. Paul, Minnesota.

Brito VN, Alves JL, Araújo KS, de Souza Leite T, de Queiroz CB, Pereira OL, & de Queiroz MV. 2023. Endophytic Trichoderma species from rubber trees native to the Brazilian Amazon, including four new species. Front. Microbiol. 14: 1095199. https://doi.org/10.3389/fmicb.2023.1095199

Cai F & Druzhinina IS. 2021. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal Divers. 107: 1–69. https://doi.org/10.1007/s13225-020-00464-4

Chet I, Benhamou N, & Haran S. 1998. Mycoparasitism and lytic enzymes. In: Harman GE & Kubicek CP (Eds.). Trichoderma and Gliocladium. Vol 2. Enzymes, Biological Control and Commercial Applications. pp 153–171. Taylor and Francis. London.

Felsenstein J. 1981. Evolutionary trees from dna sequences: A maximum likelihood approach. J Mol. Evol. 17: 368–376. https://doi.org/10.1007/BF01734359

Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39(4): 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Fety, Khotimah S, & Mukarlina. 2015. Uji antagonis jamur rizosfer isolat lokal terhadap Phytophthora sp. yang diisolasi dari batang langsat (Lansium domesticum Corr.) [Antagonist test of rhizospheric fungal local isolate against Phytophthora sp. isolated from langsat stem (Lansium domesticum Corr.)]. Protobiont. 4(1): 218–225.

Filizola PRB, Luna MAC, de Souza AF, Coelho IL, Laranjeira D, & Campos-Takaki GM. 2019. Biodiversity and phylogeny of novel Trichoderma isolates from mangrove sediments and potential of biocontrol against Fusarium strains. Micro. Cell Fact. 18(1): 89. https://doi.org/10.1186/s12934-019-1108-y

Ginting C & Maryono T. 2012. Penurunan keparahan penyakit busuk pangkal batang pada lada akibat aplikasi bahan organik dan Trichoderma harzianum [Decrease of disease severity of foot rot of black pepper due to application of organic matter and Trichoderma harzianum]. J Trop. Plant Pests Dis. 12(2): 162–168. https://doi.org/10.23960/j.hptt.212162-168

Ginting C, Prasetyo J, Nurhidayat A, & Maryono T. 2017. Efikasi isolat Trichoderma terpilih dengan bahan organik untuk mengendalikan penyakit busuk pangkal batang pada lada di lapangan [Efficacy of selected Trichoderma isolates with organic materials to control foot rot disease on black pepper in the field]. J Trop. Plant Pests Dis. 17(1): 77–83. https://doi.org/10.23960/j.hptt.11777-83

Guzmán-Guzmán P, Kumar A, de los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MdC, Fadiji AE, Hyder S, Babalola OO, & Santoyo G. 2023. Trichoderma species: Our best fungal allies in the biocontrol of plant diseases-A review. Plants. 12(3): 432. https://doi.org/10.3390/plants12030432

Gusnawaty HS, Taufik M, Triana L, & Asniah. 2014. Karakterisasi morfologis Trichoderma spp. indigenus Sulawesi Tenggara [Morphological characterization Trichoderma spp. indigenous Southeast of Sulawesi]. J. Agroteknos. 4(2): 88–94.

Gusnawaty HS, Taufik M, Bande LSS, & Asis A. 2017. Efektivitas beberapa media untuk perbanyakan agens hayati Trichoderma sp. [Effectiveness test of several media for the propagation of biological agents Trichoderma sp.]. J. Trop. Plant Pests Dis. 17(1): 70–76. https://doi.org/10.23960/j.hptt.11770-76

Hall BG. 2013. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 30(5): 1229–1235. https://doi.org/10.1093/molbev/mst012

Harni R, Amaria W, Syafaruddin, & Mahsunah AH. 2017. Potensi metabolit sekunder Trichoderma spp. untuk mengendalikan penyakit vascular streak dieback (VSD) pada bibit kakao [Potential of Trichoderma spp. secondary metabolite in controlling vascular streak dieback (VSD) disease on cocoa seedlings]. J TIDP. 4(2): 57–66.

Hewedy OA, Lateif KSA, Seleiman MF, Shami A, Albarakaty FM, & El-Meihy RM. 2020. Phylogenetic diversity of Trichoderma strains and their antagonistic potential against soil-borne pathogens under stress conditions. Biology. 9(8): 189. https://doi.org/10.3390/biology9080189

Howell CR. 2003. Mechanisms employed by Trichoderma species in the biological control of plant deseases: The history and evolution of current concepts. Plant Dis. 87(1): 1–10. https://doi.org/10.1094/PDIS.2003.87.1.4

Ichsan & Permata R. 2022. An analysis of pepper exports and imports on economic growth in Indonesia. J. Maliksussaleh Public Economics. 5(2): 26–34. https://doi.org/10.29103/jmpe.v5i2.10469

Inglis PW, Pappas MdeCR, Resende LV, & Grattapaglia D. 2018. Fast and inexpensive protocols for consistent extraction of high-quality DNA and RNA from challenging plant and fungal samples for high throughput SNP genotyping and sequencing applications. PLoS One. 13(10): e0206085. https://doi.org/10.1371/journal.pone.0206085

Ivayani I, Ginting C, Yusnita Y, & Dirmawati SR. 2018. Effectiveness of the application of organic matter and Trichoderma viride from suppresive soil to control fusarium wilt on banana plant. J Trop. Plant Pests Dis. 18(2): 119–126. https://doi.org/10.23960/j.hptt.218119-126

Jiang H, Zhang L, Zhang J, Ojaghian MR, & Hyde KD. 2016. Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro. J. Zhejiang Univ. Sci. 17(4): 271–281. https://doi.org/10.1631/jzus.B1500243

Jibat M & Asfaw M. 2023. Management of foot rot (Phytophthora capsici) disease of black pepper (Piper nigrum L.) through fungicides and cultural practices in Southwestern Ethiopia. Int. J. Agril. Res. Innov. Tech. 13(1): 48–50. https://doi.org/10.3329/ijarit.v13i1.67973

Manzar N, Kashyap AS, Goutam RS, Rajawat MVS, Sharma PK, Sharma SK, & Singh HV. 2022. Trichoderma: Advent of versatile biocontrol agent, its secrets and insights into mechanism of biocontrol potential. Sustainability. 14(19): 12786. https://doi.org/10.3390/su141912786

Meena M, Swapnil P, Zehra A, Dubey MK, & Upadhyay RS. 2017. Antagonistic assessment of Trichoderma spp. by producing volatile and non-volatile compounds against different fungal pathogens. Arch. Phytopathol. Plant Prot. 50(13,14): 629–648. https://doi.org/10.1080/03235408.2017.1357360

Mukhopadhyay R & Kumar D. 2020. Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egypt. J. Biol. Pest Control. 30: 133. https://doi.org/10.1186/s41938-020-00333-x

Nysanth NS, Divya S, Nair CB, Anju AB, Praveena R, Anith KN. 2022. Biological control of foot rot (Phytophthora capsici Leonian) disease in black pepper (Piper nigrum L.) with rhizospheric microorganisms. Rhizosphere. 23: 100578. https://doi.org/10.1016/j.rhisph.2022.100578

Rai S, Kashyap PL, Kumar S, Srivastava AK, & Ramteke PW. 2016. Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. SpringerPlus. 5: 1939. https://doi.org/10.1186/s40064-016-3657-4

Ramirez-Delgado ER, Luna-Ruiz JdJ, Morino-Rico O, Quiroz-Velasquesz JDC, & Hernandez-Mendoza JL. 2018. Effect of Trichoderma on growth and sporangia production of Phytophthora capsici. J Agric. Sci. 10(6): 8–15. https://doi.org/10.5539/jas.v10n6p8

Rini CR & Remya J. 2020. Management of Phytophthora capsici infection in black pepper (Piper nigrum L.) using new generation fungicides and biopesticide. IJAEB. 13(1): 71–74. https://doi.org/10.30954/0974-1712.1.2020.9

Shentu X, Zhan X, Ma Z, Yu X, & Zhang C. 2014. Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic. Braz. J. Microbiol. 45(1): 248–254. https://doi.org/10.1590/S1517-83822014005000036

Sibero MT, Tarman K, Radjasa OK, Sabdono A, Trianto A, & Bachtiarini TU. 2018. Produksi pigmen dan identifikasi kapang penghasilnya menggunakan pendekatan DNA Barcoding [Pigment production and identification of the producing mold using a DNA barcode approach]. Jurnal Pengolahan Hasil Perikanan Indonesia. 21(1): 99–108. https://doi.org/10.17844/jphpi.v21i1.21454

Soenartiningsih, Djaenuddin N, & Saenong MS. 2014. Efektivitas Trichoderma sp. dan Gliocladium sp. sebagai agen biokontrol hayati penyakit busuk pelepah daun pada jagung [The effectiveness of Trichoderma sp. and Gliocladium sp. as a biocontrol agent for midrib rot disease in maize]. JPPTP. 33(2): 129–135.

Song YP, Miao FP, Fang ST, Yin XL, & Ji NY. 2018. Halogenated and nonhalogenated metabolites from the marine-alga-endophytic fungus Trichoderma asperellum cf44-2. Mar. Drugs. 16(8): 266. https://doi.org/10.3390/md16080266

Stamets P. 2000. Growing Gourmet and Medicinal Mushrooms. 3rd Revised edition. Ten Speed Press. California.

Statista. 2023. Total Value of Black Pepper Exports from Indonesia from 2012 to 2022. https://www.statista.com/statistics/1228472/indonesia-value-of-black-pepper-exports. Accessed 5 December 2023.

Susilowati DN, Sofiana I, Atmini KD, & Yuniarti E. 2020. Penapisan kapang asal lahan sulfat masam Kalimantan Selatan sebagai penghasil enzim ekstraseluler [Screening of acid sulphate soils fungi from south kalimantan as source of extracelular enzymes]. Agric. 32(1): 65–82. https://doi.org/10.24246/agric.2020.v32.i1.p65-82

Sutarman , Jalaluddin AK, Li’aini AS, & Prihatiningrum AE. 2021. Characterizations of Trichoderma sp. and its effect on Ralstonia solanacearum of tobacco seedlings. J. Trop. Plant Pests Dis. 21(1): 8–19. https://doi.org/10.23960/jhptt.1218-19

Tamura K & Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10(3): 512–26. https://doi.org/10.1093/oxfordjournals.molbev.a040023

Tamura K, Stecher G, & Kumar S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38(7): 3022–3027. https://doi.org/10.1093/molbev/msab120

Thomas LM & Naik BG. 2017. Survey for the Incidence of Foot Rot of Black Pepper Caused by Phytophthora capsici Leonian in Shivamogga and Chickmagaluru Districts of Karnataka State. Int. J. Pure App. Biosci. 5(1): 293–298.

Ty?kiewicz R, Nowak A, Ozimek E, & Jaroszuk-?cise? J. 2022. Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int. J. Mol. Sci. 23(4): 2329. https://doi.org/10.3390/ijms23042329

White TJ, Bruns T, Lee S, & Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, & White TJ (Eds.). PCR Protocols: A Guide to Methods and Applications. pp. 315–322. Academic Press. Florida.

Widi A, Rita H, & Samsudin. 2015. Evaluasi jamur antagonis dalam menghambat pertumbuhan Rigidoporus microporus penyebab penyakit jamur akar putih pada tanaman karet [Evaluation of antagonistic fungi in inhibiting the growth of Rigidoporus microporus causing white root disease in rubber plants]. J TIDP. 2(1): 51–60.

Widyastuti SM, Sumardi, Irfa’i, & Nurjanto HH. 2006. Aktivitas penghambatan Trichoderma spp. formulasi terhadap jamur patogen tular tanah secara in vitro [In vitro inhibitation activity of formulated Trichoderma spp. against soil-borne pathogenic fungi. Indones. Jurnal Perlindungan Tanaman Indonesia. 8(1): 27–34.

Wu Q, Sun R, Ni M, Yu J, Li Y, Yu C, Dou K, Ren J, & Chen J. 2017. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS ONE. 12(6): e0179957. https://doi.org/10.1371/journal.pone.0179957

Yu Z, Wang Z, Zhang Y, Wang Y, & Liu Z. 2020. Analysis of TabZIP15 transcription factor from Trichoderma asperellum ACCC30536 and its function under pathogenic toxin stress. Sci. rep. 10: 15084. https://doi.org/10.1038/s41598-020-72226-w